决策主力股票论坛|今日股市行情大盘分析查询

 找回密码
 立即/注册

扫一扫,访问微社区

QQ登录

只需一步,快速开始

搜索
上证指数 2602.15 +8.06 +0.31% 香港恒生 26186.711 +415.041 +1.61% 日经225 21617.50 +469.48 +2.22% 韩国综合 2084.77 +31.80 +1.55%
道琼斯 24527.27 +157.03 +0.64% 纳斯达克 7098.31 +66.48 +0.95% 英国富时 6886.05 +79.11 +1.16% 德国DAX 10950.46 +169.95 +1.58%
人民币 6.8800 -0.0200 -0.29% 原油 51.16 -0.9487% NYMEX原油 黄金 1250.4 +0.2566% COMEX黄金全球股市行情 2018年12月13日05时23分
查看: 9775|回复: 0

AI寒冬将至?行业大咖呼吁重启AI再出发

[复制链接]
发表于 2018-10-16 19:00:05 | 显示全部楼层 |阅读模式

AI仍在继续兴起,尽管它并没有成为人们所期待的那种广泛性力量。在过去几年中,AI领域的发展速度令人震惊。自2000年以来,活跃的AI初创企业数量增加了14倍,风投对AI初创企业的投资增加了6倍,需要AI技能的工作比例增长了4.5倍。
不过,领先的互联网数据统计机构Statista发布的调查结果显示,截止2017年,全球只有5%的企业在其流程和产品中广泛采用了AI,32%的企业尚未采用AI,22%的企业甚至没有采用AI的计划。知名AI研究人员菲利普皮恩尼斯基(Filip Pieniewski)最近在科技媒体Venturebeat上撰文,阐述了他的观点,宣称AI寒冬即将到来。
皮恩尼斯基说:我们现在正处于2018年中后期,AI领域的情况已经发生了变化。尽管表面上看似乎并非如此,比如NIPS会议仍然超受欢迎,企业公关团队在新闻发布会上仍然充斥着AI,美国连续创业家伊隆马斯克(Elon Musk)仍在承诺打造无人驾驶汽车,谷歌也始终在推动吴恩达(Andrew Ng)的理念,即AI比电力更强大。但这种叙述已经开始崩溃。
我们极力宣传无人驾驶汽车的愿景。今年春天早些时候,一名行人被无人驾驶汽车撞死,这一事件引起了人们的警觉,人们不仅质疑这项技术,还质疑无人驾驶系统决策的背后是否存在道德问题。无人驾驶汽车的问题不是在挽救1个人还是5个人之间做出简单的二元选择,而是在演变成一场关于良知、情感和感知的辩论,使机器做出合理决策的道路变得更加复杂。
皮恩尼斯基等人得出的结论是:全自动无人驾驶汽车的梦想可能比我们想象的遥远得多。AI专家们越来越担心,无人驾驶系统要想可靠地避免事故,可能还需要数年甚至数十年时间的努力。
| 所谓的AI落地只是试点
让我们以史为鉴来看下,云计算和网络工业都花了大约5年的时间才开始对人们的生活产生重大影响,而这些行业影响市场的重大转变也花了近10年时间。我们正在为AI设想一个类似的时间表。正如平台技术、开源和封闭源系统以及AI技术方面经验丰富的工程主管凯伦班尼特(Karen Bennet)解释的那样:
为了让每个人都能采用,一款产品需要方便可用,需要是能够扩展至被所有人使用,而不仅仅是服务于数据科学家。该产品将需要考虑数据生命周期中数据捕获、准备、培训模型和预测等环节。随着数据被存储在云端,数据管道可以不断地提取,并准备用它们来训练模型,从而做出预测。模型需要借助新的训练数据不断改进,从而保持模型的相关性和透明性。这就是目标和希望。
我(本文作者杰西琼斯(Jessie Jones))和班尼特都来自科技和AI初创企业。我们所见证的以及在AI社区中与同行讨论中我们所意识到的是,我们正在众多商业问题上进行广泛的实验,然而这些实验往往停留在实验室中。这篇最近的文章证实了当今普遍存在的AI炒作问题:
AI技术供应商往往会受到激励,让他们的技术听起来比实际中更强,但这也暗示了它们在现实世界中的吸引力比实际上更大企业中的大多数AI应用程序不过是试点。在AI领域兜售营销解决方案、医疗保健解决方案和金融解决方案的供应商,基本上只是在测试这项技术。在任何特定的行业中,我们发现,在销售AI软件和技术的数百家供应商中,只有大约三分之一的公司具备开发AI所需的技能。
风投公司意识到,他们可能在一段时间内看不到投资回报。然而,AI还没有准备好迎接黄金时段的到来,原因之一就在于几乎无处不在的AI实验几乎都没有看到曙光。
| 算法需要负责任吗
我们听说过AI黑箱,即研究人员目前还不清楚AI如何做出决策。这种做法是在银行和大型机构面临要求问责制的合规标准和政策的情况下出现的。由于系统是作为黑箱操作的,只要这些算法的创建经过了审查,并且满足了关键涉众的一些标准,人们就可能对算法产生固有的信任。
鉴于大量证据表明开发中的算法存在缺陷,以及由此产生意想不到的有害结果,这种观点很快就引发了争议。我们的许多简单系统都像黑箱一样运作,超出了任何有意义的审查范围,原因包括公司有意保密、缺乏足够的教育以及缺乏了解如何批判性地检查输入、结果,最重要的是,不理解为何会出现这些结果。
班尼特表示:如今,AI行业正处于企业准备采用的早期阶段。AI是非常有用的,可以通过大量的数据进行发现和分析,但是它仍然需要人类的干预作为对数据及其结果进行评估和行动指南。

▲截至2017年,全球商业组织中的人工智能的采用水平
班尼特还澄清说,如今的机器学习技术使数据能够被标记出来,以帮助识别真知灼见。然而,作为这个过程的一部分,如果有些数据被错误地标记,或者没有足够的数据训练,亦或者有问题的数据产生偏见,很可能会出现糟糕的决策结果。她还表示,目前的流程仍在不断完善:目前,AI都是关于决策支持的,以提供洞察,让企业可以从中得出结论。在AI发展的下一个阶段,AI可将数据中的动作自动化,还有些额外的问题需要解决,比如偏见、可解释性、隐私性、多样性、伦理和持续的模型学习等。
这表明,要想真正理解AI产品,需要有个关于对象和人的常识世界模型,以帮助AI去真正了解它们。一个模型只暴露在有限数量的标记对象和有限种类的训练中,这将限制这个常识世界模型的有效性。企业需要进行研究,以确定模型如何处理其输入,并以人类可以理解的方式得出其结论。亚马逊发布的面部识别技术Rekognition,是目前正在研发和许可使用的AI技术的典型例子,但其有效性存在明显的差距。
美国公民自由联盟发布的一项研究称:亚马逊的技术将28名国会议员的照片与罪犯公开的脸部照片混淆了。鉴于亚马逊积极向美国各地的执法机构推销自己的Rekognition,这显示其还远远不够好。算法正义联盟(Algorithmic Justice League)的创始人乔伊布拉马维尼(Joy Buolamwini)在最近的一次采访中,呼吁暂停这项技术,称其无效,并需要更多监管。此外,在这些系统被公开发布之前,政府应该制定更多相关标准。
| 数据的完整性问题
如今的AI需要大量的数据才能产生有意义的结果,但无法利用其他应用程序的经验。虽然班尼特认为克服这些局限性的工作正取得进展,但是在模型以可扩展的方式应用之前,学习的转移是有必要的。然而,在某些情况下,AI可以在今天得到有效的应用,比如在图像、声音、视频和翻译语言方面的洞察力。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即/注册

本版积分规则



手机版|今日股市行情|联系我们|决策主力股票论坛 ( 鄂ICP备15023833号-1)点击这里给我发消息 鄂公网安备 42062502000040号

GMT+8, 2018-12-13 05:27

Powered by 今日股市

© 2001-2017 http://jue-ce.com/

快速回复 返回顶部 返回列表